Low Precision Floating-point Arithmetic for High Performance FPGA-based CNN Acceleration

29 Feb 2020 Wu Chen Wang Mingyu Chu Xinyuan Wang Kun He Lei

Low precision data representation is important to reduce storage size and memory access for convolutional neural networks (CNNs). Yet, existing methods have two major limitations: (1) requiring re-training to maintain accuracy for deep CNNs, and (2) needing 16-bit floating-point or 8-bit fixed-point for a good accuracy... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet