Low-rank Multi-view Clustering in Third-Order Tensor Space

30 Aug 2016  ·  Ming Yin, Junbin Gao, Shengli Xie, Yi Guo ·

The plenty information from multiple views data as well as the complementary information among different views are usually beneficial to various tasks, e.g., clustering, classification, de-noising. Multi-view subspace clustering is based on the fact that the multi-view data are generated from a latent subspace. To recover the underlying subspace structure, the success of the sparse and/or low-rank subspace clustering has been witnessed recently. Despite some state-of-the-art subspace clustering approaches can numerically handle multi-view data, by simultaneously exploring all possible pairwise correlation within views, the high order statistics is often disregarded which can only be captured by simultaneously utilizing all views. As a consequence, the clustering performance for multi-view data is compromised. To address this issue, in this paper, a novel multi-view clustering method is proposed by using \textit{t-product} in third-order tensor space. Based on the circular convolution operation, multi-view data can be effectively represented by a \textit{t-linear} combination with sparse and low-rank penalty using "self-expressiveness". Our extensive experimental results on facial, object, digits image and text data demonstrate that the proposed method outperforms the state-of-the-art methods in terms of many criteria.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here