LPV sequential loop closing for high-precision motion systems

15 Mar 2022  ·  Yorick Broens, Hans Butler, Roland Tóth ·

Increasingly stringent throughput requirements in the industry necessitate the need for lightweight design of high-precision motion systems to allow for high accelerations, while still achieving accurate positioning of the moving-body. The presence of position dependent dynamics in such motion systems severely limits achievable position tracking performance using conventional sequential loop closing (SLC) control design strategies. This paper presents a novel extension of the conventional SLC design framework towards linear-parameter-varying systems, which allows to circumvent limitations that are introduced by position dependent effects in high-precision motion systems. Advantages of the proposed control design approach are demonstrated in simulation using a high-fidelity model of a moving-magnet planar actuator system, which exhibits position dependency in both actuation and sensing.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here