LSTM Networks Can Perform Dynamic Counting

In this paper, we systematically assess the ability of standard recurrent networks to perform dynamic counting and to encode hierarchical representations. All the neural models in our experiments are designed to be small-sized networks both to prevent them from memorizing the training sets and to visualize and interpret their behaviour at test time. Our results demonstrate that the Long Short-Term Memory (LSTM) networks can learn to recognize the well-balanced parenthesis language (Dyck-$1$) and the shuffles of multiple Dyck-$1$ languages, each defined over different parenthesis-pairs, by emulating simple real-time $k$-counter machines. To the best of our knowledge, this work is the first study to introduce the shuffle languages to analyze the computational power of neural networks. We also show that a single-layer LSTM with only one hidden unit is practically sufficient for recognizing the Dyck-$1$ language. However, none of our recurrent networks was able to yield a good performance on the Dyck-$2$ language learning task, which requires a model to have a stack-like mechanism for recognition.

PDF Abstract WS 2019 PDF WS 2019 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods