MACH: Embarrassingly parallel $K$-class classification in $O(d\log{K})$ memory and $O(K\log{K} + d\log{K})$ time, instead of $O(Kd)$

ICLR 2018 Qixuan HuangAnshumali ShrivastavaYiqiu Wang

We present Merged-Averaged Classifiers via Hashing (MACH) for $K$-classification with large $K$. Compared to traditional one-vs-all classifiers that require $O(Kd)$ memory and inference cost, MACH only need $O(d\log{K})$ memory while only requiring $O(K\log{K} + d\log{K})$ operation for inference... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet