Machine learning and atomic layer deposition: predicting saturation times from reactor growth profiles using artificial neural networks

10 May 2022  ·  Angel Yanguas-Gil, Jeffrey W. Elam ·

In this work we explore the application of deep neural networks to the optimization of atomic layer deposition processes based on thickness values obtained at different points of an ALD reactor. We introduce a dataset designed to train neural networks to predict saturation times based on the dose time and thickness values measured at different points of the reactor for a single experimental condition. We then explore different artificial neural network configurations, including depth (number of hidden layers) and size (number of neurons in each layers) to better understand the size and complexity that neural networks should have to achieve high predictive accuracy. The results obtained show that trained neural networks can accurately predict saturation times without requiring any prior information on the surface kinetics. This provides a viable approach to minimize the number of experiments required to optimize new ALD processes in a known reactor. However, the datasets and training procedure depend on the reactor geometry.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here