Machine Learning for Clinical Predictive Analytics

19 Sep 2019  ·  Wei-Hung Weng ·

In this chapter, we provide a brief overview of applying machine learning techniques for clinical prediction tasks. We begin with a quick introduction to the concepts of machine learning and outline some of the most common machine learning algorithms. Next, we demonstrate how to apply the algorithms with appropriate toolkits to conduct machine learning experiments for clinical prediction tasks. The objectives of this chapter are to (1) understand the basics of machine learning techniques and the reasons behind why they are useful for solving clinical prediction problems, (2) understand the intuition behind some machine learning models, including regression, decision trees, and support vector machines, and (3) understand how to apply these models to clinical prediction problems using publicly available datasets via case studies.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here