Machine learning force-field models for metallic spin glass

28 Nov 2023  ·  Menglin Shi, Sheng Zhang, Gia-Wei Chern ·

Metallic spin glass systems, such as dilute magnetic alloys, are characterized by randomly distributed local moments coupled to each other through a long-range electron-mediated effective interaction. We present a scalable machine learning (ML) framework for dynamical simulations of metallic spin glasses. A Behler-Parrinello type neural-network model, based on the principle of locality, is developed to accurately and efficiently predict electron-induced local magnetic fields that drive the spin dynamics. A crucial component of the ML model is a proper symmetry-invariant representation of local magnetic environment which is direct input to the neural net. We develop such a magnetic descriptor by incorporating the spin degrees of freedom into the atom-centered symmetry function methods which are widely used in ML force-field models for quantum molecular dynamics. We apply our approach to study the relaxation dynamics of an amorphous generalization of the s-d model. Our work highlights the promising potential of ML models for large-scale dynamical modeling of itinerant magnets with quenched disorder.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods