Machine-Learning Non-Conservative Dynamics for New-Physics Detection

31 May 2021  ·  Ziming Liu, Bohan Wang, Qi Meng, Wei Chen, Max Tegmark, Tie-Yan Liu ·

Energy conservation is a basic physics principle, the breakdown of which often implies new physics. This paper presents a method for data-driven "new physics" discovery. Specifically, given a trajectory governed by unknown forces, our Neural New-Physics Detector (NNPhD) aims to detect new physics by decomposing the force field into conservative and non-conservative components, which are represented by a Lagrangian Neural Network (LNN) and a universal approximator network (UAN), respectively, trained to minimize the force recovery error plus a constant $\lambda$ times the magnitude of the predicted non-conservative force. We show that a phase transition occurs at $\lambda$=1, universally for arbitrary forces. We demonstrate that NNPhD successfully discovers new physics in toy numerical experiments, rediscovering friction (1493) from a damped double pendulum, Neptune from Uranus' orbit (1846) and gravitational waves (2017) from an inspiraling orbit. We also show how NNPhD coupled with an integrator outperforms previous methods for predicting the future of a damped double pendulum.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here