Machine Learning-Powered Course Allocation

3 Oct 2022  ·  Ermis Soumalias, Behnoosh Zamanlooy, Jakob Weissteiner, Sven Seuken ·

We study the course allocation problem, where universities assign course schedules to students. The current state-of-the-art mechanism, Course Match, has one major shortcoming: students make significant mistakes when reporting their preferences, which negatively affects welfare and fairness. To address this issue, we introduce a new mechanism, Machine Learning-powered Course Match (MLCM). At the core of MLCM is a machine learning-powered preference elicitation module that iteratively asks personalized pairwise comparison queries to alleviate students' reporting mistakes. Extensive computational experiments, grounded in real-world data, demonstrate that MLCM, with only ten comparison queries, significantly increases both average and minimum student utility by 7%-11% and 17%-29%, respectively. Finally, we highlight MLCM's robustness to changes in the environment and show how our design minimizes the risk of upgrading to MLCM while making the upgrade process simple for universities and seamless for their students.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here