Machine Learning Prediction of COVID-19 Severity Levels From Salivaomics Data

15 Jul 2022  ·  Aaron Wang, Feng Li, Samantha Chiang, Jennifer Fulcher, Otto Yang, David Wong, Fang Wei ·

The clinical spectrum of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the strain of coronavirus that caused the COVID-19 pandemic, is broad, extending from asymptomatic infection to severe immunopulmonary reactions that, if not categorized properly, may be life-threatening. Researchers rate COVID-19 patients on a scale from 1 to 8 according to the severity level of COVID-19, 1 being healthy and 8 being extremely sick, based on a multitude of factors including number of clinic visits, days since the first sign of symptoms, and more. However, there are two issues with the current state of severity level designation. Firstly, there exists variation among researchers in determining these patient scores, which may lead to improper treatment. Secondly, researchers use a variety of metrics to determine patient severity level, including metrics involving plasma collection that require invasive procedures. This project aims to remedy both issues by introducing a machine learning framework that unifies severity level designations based on noninvasive saliva biomarkers. Our results show that we can successfully use machine learning on salivaomics data to predict the severity level of COVID-19 patients, indicating the presence of viral load using saliva biomarkers.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here