Machine Learning's Dropout Training is Distributionally Robust Optimal

13 Sep 2020  ·  Jose Blanchet, Yang Kang, Jose Luis Montiel Olea, Viet Anh Nguyen, Xuhui Zhang ·

This paper shows that dropout training in Generalized Linear Models is the minimax solution of a two-player, zero-sum game where an adversarial nature corrupts a statistician's covariates using a multiplicative nonparametric errors-in-variables model. In this game, nature's least favorable distribution is dropout noise, where nature independently deletes entries of the covariate vector with some fixed probability $\delta$... This result implies that dropout training indeed provides out-of-sample expected loss guarantees for distributions that arise from multiplicative perturbations of in-sample data. In addition to the decision-theoretic analysis, the paper makes two more contributions. First, there is a concrete recommendation on how to select the tuning parameter $\delta$ to guarantee that, as the sample size grows large, the in-sample loss after dropout training exceeds the true population loss with some pre-specified probability. Second, the paper provides a novel, parallelizable, Unbiased Multi-Level Monte Carlo algorithm to speed-up the implementation of dropout training. Our algorithm has a much smaller computational cost compared to the naive implementation of dropout, provided the number of data points is much smaller than the dimension of the covariate vector. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods