Mancs: A Multi-task Attentional Network with Curriculum Sampling for Person Re-identification

We propose a novel deep network called Mancs that solves the person re-identification problem from the following aspects: fully utilizing the attention mechanism for the person misalignment problem and properly sampling for the ranking loss to obtain more stable person representation. Technically, we contribute a novel fully attentional block which is deeply supervised and can be plugged into any CNN, and a novel curriculum sampling method which is effective for training ranking losses... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet