MAPDP: Cooperative Multi-Agent Reinforcement Learning to Solve Pickup and Delivery Problems

AAAI -22 2022  ·  Zefang Zong, Meng Zheng, Yong Li, Depeng Jin ·

Cooperative Pickup and Delivery Problem (PDP), as a variant of the typical Vehicle Routing Problems (VRP), is an important formulation in many real-world applications, such as on-demand delivery, industrial warehousing, etc. It is of great importance to efficiently provide high-quality solutions of cooperative PDP. However, it is not trivial to provide effective solutions directly due to two major challenges: 1) the structural dependency between pickup and delivery pairs require explicit modeling and representation. 2) the cooperation between different vehicles is highly related to solution exploration and is difficult to model. In this paper, we propose a novel multi-agent reinforcement learning-based framework to solve the cooperative PDP (MAPDP). First, we design a paired context embedding to well measure the dependency of different nodes considering their structural limits. Second, we utilize cooperative multi-agent decoders to leverage the decision dependence among different vehicle agents based on a special communication embedding. Third, we design a novel cooperative A2C algorithm to train the integrated model. We conduct extensive experiments on a randomly generated dataset and a real-world dataset. Experiments result shown that the proposed MAPDP outperforms all other baselines by at least 1.64% in all settings, and shows significant computation speed during solution inference.

PDF

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here