Margins, Kernels and Non-linear Smoothed Perceptrons

15 May 2015  ·  Aaditya Ramdas, Javier Peña ·

We focus on the problem of finding a non-linear classification function that lies in a Reproducing Kernel Hilbert Space (RKHS) both from the primal point of view (finding a perfect separator when one exists) and the dual point of view (giving a certificate of non-existence), with special focus on generalizations of two classical schemes - the Perceptron (primal) and Von-Neumann (dual) algorithms. We cast our problem as one of maximizing the regularized normalized hard-margin ($\rho$) in an RKHS and %use the Representer Theorem to rephrase it in terms of a Mahalanobis dot-product/semi-norm associated with the kernel's (normalized and signed) Gram matrix. We derive an accelerated smoothed algorithm with a convergence rate of $\tfrac{\sqrt {\log n}}{\rho}$ given $n$ separable points, which is strikingly similar to the classical kernelized Perceptron algorithm whose rate is $\tfrac1{\rho^2}$. When no such classifier exists, we prove a version of Gordan's separation theorem for RKHSs, and give a reinterpretation of negative margins. This allows us to give guarantees for a primal-dual algorithm that halts in $\min\{\tfrac{\sqrt n}{|\rho|}, \tfrac{\sqrt n}{\epsilon}\}$ iterations with a perfect separator in the RKHS if the primal is feasible or a dual $\epsilon$-certificate of near-infeasibility.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here