Mask-based Neural Beamforming for Moving Speakers with Self-Attention-based Tracking

7 May 2022  ·  Tsubasa Ochiai, Marc Delcroix, Tomohiro Nakatani, Shoko Araki ·

Beamforming is a powerful tool designed to enhance speech signals from the direction of a target source. Computing the beamforming filter requires estimating spatial covariance matrices (SCMs) of the source and noise signals. Time-frequency masks are often used to compute these SCMs. Most studies of mask-based beamforming have assumed that the sources do not move. However, sources often move in practice, which causes performance degradation. In this paper, we address the problem of mask-based beamforming for moving sources. We first review classical approaches to tracking a moving source, which perform online or blockwise computation of the SCMs. We show that these approaches can be interpreted as computing a sum of instantaneous SCMs weighted by attention weights. These weights indicate which time frames of the signal to consider in the SCM computation. Online or blockwise computation assumes a heuristic and deterministic way of computing these attention weights that, although simple, may not result in optimal performance. We thus introduce a learning-based framework that computes optimal attention weights for beamforming. We achieve this using a neural network implemented with self-attention layers. We show experimentally that our proposed framework can greatly improve beamforming performance in moving source situations while maintaining high performance in non-moving situations, thus enabling the development of mask-based beamformers robust to source movements.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here