MaskedKD: Efficient Distillation of Vision Transformers with Masked Images

21 Feb 2023  ·  Seungwoo Son, Namhoon Lee, Jaeho Lee ·

Knowledge distillation is an effective method for training lightweight models, but it introduces a significant amount of computational overhead to the training cost, as the method requires acquiring teacher supervisions on training samples. This additional cost -- called distillation cost -- is most pronounced when we employ large-scale teacher models such as vision transformers (ViTs). We present MaskedKD, a simple yet effective strategy that can significantly reduce the cost of distilling ViTs without sacrificing the prediction accuracy of the student model. Specifically, MaskedKD diminishes the cost of running teacher at inference by masking a fraction of image patch tokens fed to the teacher, and therefore skipping the computations required to process those patches. The mask locations are selected to prevent masking away the core features of an image that the student model uses for prediction. This mask selection mechanism operates based on some attention score of the student model, which is already computed during the student forward pass, and thus incurs almost no additional computation. Without sacrificing the final student accuracy, MaskedKD dramatically reduces the amount of computations required for distilling ViTs. We demonstrate that MaskedKD can save up the distillation cost by $50\%$ without any student performance drop, leading to approximately $28\%$ drop in the overall training FLOPs.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here