A System for Massively Parallel Hyperparameter Tuning

Modern learning models are characterized by large hyperparameter spaces and long training times. These properties, coupled with the rise of parallel computing and the growing demand to productionize machine learning workloads, motivate the need to develop mature hyperparameter optimization functionality in distributed computing settings. We address this challenge by first introducing a simple and robust hyperparameter optimization algorithm called ASHA, which exploits parallelism and aggressive early-stopping to tackle large-scale hyperparameter optimization problems. Our extensive empirical results show that ASHA outperforms existing state-of-the-art hyperparameter optimization methods; scales linearly with the number of workers in distributed settings; and is suitable for massive parallelism, as demonstrated on a task with 500 workers. We then describe several design decisions we encountered, along with our associated solutions, when integrating ASHA in Determined AI's end-to-end production-quality machine learning system that offers hyperparameter tuning as a service.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here