Matrix Completion from a Few Entries

20 Jan 2009  ·  Raghunandan H. Keshavan, Andrea Montanari, Sewoong Oh ·

Let M be a random (alpha n) x n matrix of rank r<<n, and assume that a uniformly random subset E of its entries is observed. We describe an efficient algorithm that reconstructs M from |E| = O(rn) observed entries with relative root mean square error RMSE <= C(rn/|E|)^0.5 . Further, if r=O(1), M can be reconstructed exactly from |E| = O(n log(n)) entries. These results apply beyond random matrices to general low-rank incoherent matrices. This settles (in the case of bounded rank) a question left open by Candes and Recht and improves over the guarantees for their reconstruction algorithm. The complexity of our algorithm is O(|E|r log(n)), which opens the way to its use for massive data sets. In the process of proving these statements, we obtain a generalization of a celebrated result by Friedman-Kahn-Szemeredi and Feige-Ofek on the spectrum of sparse random matrices.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here