Matrix Completion from $O(n)$ Samples in Linear Time

8 Feb 2017  ·  David Gamarnik, Quan Li, Hongyi Zhang ·

We consider the problem of reconstructing a rank-$k$ $n \times n$ matrix $M$ from a sampling of its entries. Under a certain incoherence assumption on $M$ and for the case when both the rank and the condition number of $M$ are bounded, it was shown in \cite{CandesRecht2009, CandesTao2010, keshavan2010, Recht2011, Jain2012, Hardt2014} that $M$ can be recovered exactly or approximately (depending on some trade-off between accuracy and computational complexity) using $O(n \, \text{poly}(\log n))$ samples in super-linear time $O(n^{a} \, \text{poly}(\log n))$ for some constant $a \geq 1$. In this paper, we propose a new matrix completion algorithm using a novel sampling scheme based on a union of independent sparse random regular bipartite graphs. We show that under the same conditions w.h.p. our algorithm recovers an $\epsilon$-approximation of $M$ in terms of the Frobenius norm using $O(n \log^2(1/\epsilon))$ samples and in linear time $O(n \log^2(1/\epsilon))$. This provides the best known bounds both on the sample complexity and computational complexity for reconstructing (approximately) an unknown low-rank matrix. The novelty of our algorithm is two new steps of thresholding singular values and rescaling singular vectors in the application of the "vanilla" alternating minimization algorithm. The structure of sparse random regular graphs is used heavily for controlling the impact of these regularization steps.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here