Matrix Factorization using Window Sampling and Negative Sampling for Improved Word Representations

In this paper, we propose LexVec, a new method for generating distributed word representations that uses low-rank, weighted factorization of the Positive Point-wise Mutual Information matrix via stochastic gradient descent, employing a weighting scheme that assigns heavier penalties for errors on frequent co-occurrences while still accounting for negative co-occurrence. Evaluation on word similarity and analogy tasks shows that LexVec matches and often outperforms state-of-the-art methods on many of these tasks...

PDF Abstract ACL 2016 PDF ACL 2016 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here