Max-Margin Majority Voting for Learning from Crowds

NeurIPS 2015  ·  Tian Tian, Jun Zhu ·

Learning-from-crowds aims to design proper aggregation strategies to infer the unknown true labels from the noisy labels provided by ordinary web workers. This paper presents max-margin majority voting (M^3V) to improve the discriminative ability of majority voting and further presents a Bayesian generalization to incorporate the flexibility of generative methods on modeling noisy observations with worker confusion matrices. We formulate the joint learning as a regularized Bayesian inference problem, where the posterior regularization is derived by maximizing the margin between the aggregated score of a potential true label and that of any alternative label. Our Bayesian model naturally covers the Dawid-Skene estimator and M^3V. Empirical results demonstrate that our methods are competitive, often achieving better results than state-of-the-art estimators.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here