Maximal Sparsity with Deep Networks?

NeurIPS 2016  ·  Bo Xin, Yizhou Wang, Wen Gao, David Wipf ·

The iterations of many sparse estimation algorithms are comprised of a fixed linear filter cascaded with a thresholding nonlinearity, which collectively resemble a typical neural network layer. Consequently, a lengthy sequence of algorithm iterations can be viewed as a deep network with shared, hand-crafted layer weights. It is therefore quite natural to examine the degree to which a learned network model might act as a viable surrogate for traditional sparse estimation in domains where ample training data is available. While the possibility of a reduced computational budget is readily apparent when a ceiling is imposed on the number of layers, our work primarily focuses on estimation accuracy. In particular, it is well-known that when a signal dictionary has coherent columns, as quantified by a large RIP constant, then most tractable iterative algorithms are unable to find maximally sparse representations. In contrast, we demonstrate both theoretically and empirically the potential for a trained deep network to recover minimal $\ell_0$-norm representations in regimes where existing methods fail. The resulting system is deployed on a practical photometric stereo estimation problem, where the goal is to remove sparse outliers that can disrupt the estimation of surface normals from a 3D scene.

PDF Abstract NeurIPS 2016 PDF NeurIPS 2016 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here