Maximization of Approximately Submodular Functions

NeurIPS 2016  ·  Thibaut Horel, Yaron Singer ·

We study the problem of maximizing a function that is approximately submodular under a cardinality constraint. Approximate submodularity implicitly appears in a wide range of applications as in many cases errors in evaluation of a submodular function break submodularity. Say that $F$ is $\eps$-approximately submodular if there exists a submodular function $f$ such that $(1-\eps)f(S) \leq F(S)\leq (1+\eps)f(S)$ for all subsets $S$. We are interested in characterizing the query-complexity of maximizing $F$ subject to a cardinality constraint $k$ as a function of the error level $\eps > 0$. We provide both lower and upper bounds: for $\eps > n^{-1/2}$ we show an exponential query-complexity lower bound. In contrast, when $\eps < {1}/{k}$ or under a stronger bounded curvature assumption, we give constant approximation algorithms.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here