Maximizing information from chemical engineering data sets: Applications to machine learning

25 Jan 2022  ·  Alexander Thebelt, Johannes Wiebe, Jan Kronqvist, Calvin Tsay, Ruth Misener ·

It is well-documented how artificial intelligence can have (and already is having) a big impact on chemical engineering. But classical machine learning approaches may be weak for many chemical engineering applications. This review discusses how challenging data characteristics arise in chemical engineering applications. We identify four characteristics of data arising in chemical engineering applications that make applying classical artificial intelligence approaches difficult: (1) high variance, low volume data, (2) low variance, high volume data, (3) noisy/corrupt/missing data, and (4) restricted data with physics-based limitations. For each of these four data characteristics, we discuss applications where these data characteristics arise and show how current chemical engineering research is extending the fields of data science and machine learning to incorporate these challenges. Finally, we identify several challenges for future research.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here