Maximum Likelihood Estimation for Learning Populations of Parameters

12 Feb 2019  ·  Ramya Korlakai Vinayak, Weihao Kong, Gregory Valiant, Sham M. Kakade ·

Consider a setting with $N$ independent individuals, each with an unknown parameter, $p_i \in [0, 1]$ drawn from some unknown distribution $P^\star$. After observing the outcomes of $t$ independent Bernoulli trials, i.e., $X_i \sim \text{Binomial}(t, p_i)$ per individual, our objective is to accurately estimate $P^\star$. This problem arises in numerous domains, including the social sciences, psychology, health-care, and biology, where the size of the population under study is usually large while the number of observations per individual is often limited. Our main result shows that, in the regime where $t \ll N$, the maximum likelihood estimator (MLE) is both statistically minimax optimal and efficiently computable. Precisely, for sufficiently large $N$, the MLE achieves the information theoretic optimal error bound of $\mathcal{O}(\frac{1}{t})$ for $t < c\log{N}$, with regards to the earth mover's distance (between the estimated and true distributions). More generally, in an exponentially large interval of $t$ beyond $c \log{N}$, the MLE achieves the minimax error bound of $\mathcal{O}(\frac{1}{\sqrt{t\log N}})$. In contrast, regardless of how large $N$ is, the naive "plug-in" estimator for this problem only achieves the sub-optimal error of $\Theta(\frac{1}{\sqrt{t}})$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here