Measuring algorithmic interpretability: A human-learning-based framework and the corresponding cognitive complexity score

20 May 2022  ·  John P. Lalor, Hong Guo ·

Algorithmic interpretability is necessary to build trust, ensure fairness, and track accountability. However, there is no existing formal measurement method for algorithmic interpretability. In this work, we build upon programming language theory and cognitive load theory to develop a framework for measuring algorithmic interpretability. The proposed measurement framework reflects the process of a human learning an algorithm. We show that the measurement framework and the resulting cognitive complexity score have the following desirable properties - universality, computability, uniqueness, and monotonicity. We illustrate the measurement framework through a toy example, describe the framework and its conceptual underpinnings, and demonstrate the benefits of the framework, in particular for managers considering tradeoffs when selecting algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here