Measuring the Robustness of NLP Models to Domain Shifts

Existing research on Domain Robustness (DR) suffers from disparate setups, limited task variety, and scarce research on recent capabilities such as in-context learning. Furthermore, the common practice of measuring DR might not be fully accurate. Current research focuses on challenge sets and relies solely on the Source Drop (SD): Using the source in-domain performance as a reference point for degradation. However, we argue that the Target Drop (TD), which measures degradation from the target in-domain performance, should be used as a complementary point of view. To address these issues, we first curated a DR benchmark comprised of 7 diverse NLP tasks, which enabled us to measure both the SD and the TD. We then conducted a comprehensive large-scale DR study involving over 14,000 domain shifts across 21 fine-tuned models and few-shot LLMs. We found that both model types suffer from drops upon domain shifts. While fine-tuned models excel in-domain, few-shot LLMs often surpass them cross-domain, showing better robustness. In addition, we found that a large SD can often be explained by shifting to a harder domain rather than by a genuine DR challenge, and this highlights the importance of TD as a complementary metric. We hope our study will shed light on the current DR state of NLP models and promote improved evaluation practices toward more robust models.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods