Median-Truncated Nonconvex Approach for Phase Retrieval with Outliers

11 Mar 2016 Huishuai Zhang Yuejie Chi Yingbin Liang

This paper investigates the phase retrieval problem, which aims to recover a signal from the magnitudes of its linear measurements. We develop statistically and computationally efficient algorithms for the situation when the measurements are corrupted by sparse outliers that can take arbitrary values... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet