Megapixel Size Image Creation using Generative Adversarial Networks

31 May 2017  ·  Marco Marchesi ·

Since its appearance, Generative Adversarial Networks (GANs) have received a lot of interest in the AI community. In image generation several projects showed how GANs are able to generate photorealistic images but the results so far did not look adequate for the quality standard of visual media production industry. We present an optimized image generation process based on a Deep Convolutional Generative Adversarial Networks (DCGANs), in order to create photorealistic high-resolution images (up to 1024x1024 pixels). Furthermore, the system was fed with a limited dataset of images, less than two thousand images. All these results give more clue about future exploitation of GANs in Computer Graphics and Visual Effects.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.