Stability and Memory-loss go Hand-in-Hand: Three Results in Dynamics & Computation

3 Jan 2020  ·  G Manjunath ·

The search for universal laws that help establish a relationship between dynamics and computation is driven by recent expansionist initiatives in biologically inspired computing. A general setting to understand both such dynamics and computation is a driven dynamical system that responds to a temporal input. Surprisingly, we find memory-loss a feature of driven systems to forget their internal states helps provide unambiguous answers to the following fundamental stability questions that have been unanswered for decades: what is necessary and sufficient so that slightly different inputs still lead to mostly similar responses? How does changing the driven system's parameters affect stability? What is the mathematical definition of the edge-of-criticality? We anticipate our results to be timely in understanding and designing biologically inspired computers that are entering an era of dedicated hardware implementations for neuromorphic computing and state-of-the-art reservoir computing applications.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here