Meta-Calibration: Learning of Model Calibration Using Differentiable Expected Calibration Error

17 Jun 2021  ·  Ondrej Bohdal, Yongxin Yang, Timothy Hospedales ·

Calibration of neural networks is a topical problem that is becoming more and more important as neural networks increasingly underpin real-world applications. The problem is especially noticeable when using modern neural networks, for which there is a significant difference between the confidence of the model and the probability of correct prediction. Various strategies have been proposed to improve calibration, yet accurate calibration remains challenging. We propose a novel framework with two contributions: introducing a new differentiable surrogate for expected calibration error (DECE) that allows calibration quality to be directly optimised, and a meta-learning framework that uses DECE to optimise for validation set calibration with respect to model hyper-parameters. The results show that we achieve competitive performance with existing calibration approaches. Our framework opens up a new avenue and toolset for tackling calibration, which we believe will inspire further work on this important challenge.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here