Meta-Learning Acquisition Functions for Transfer Learning in Bayesian Optimization

Transferring knowledge across tasks to improve data-efficiency is one of the open key challenges in the field of global black-box optimization. Readily available algorithms are typically designed to be universal optimizers and, therefore, often suboptimal for specific tasks. We propose a novel transfer learning method to obtain customized optimizers within the well-established framework of Bayesian optimization, allowing our algorithm to utilize the proven generalization capabilities of Gaussian processes. Using reinforcement learning to meta-train an acquisition function (AF) on a set of related tasks, the proposed method learns to extract implicit structural information and to exploit it for improved data-efficiency. We present experiments on a simulation-to-real transfer task as well as on several synthetic functions and on two hyperparameter search problems. The results show that our algorithm (1) automatically identifies structural properties of objective functions from available source tasks or simulations, (2) performs favourably in settings with both scarse and abundant source data, and (3) falls back to the performance level of general AFs if no particular structure is present.

PDF Abstract ICLR 2020 PDF ICLR 2020 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here