Meta-learning for RIS-assisted NOMA Networks

4 Nov 2021  ·  Yixuan Zou, Yuanwei Liu, Kaifeng Han, Xiao Liu, Kok Keong Chai ·

A novel reconfigurable intelligent surfaces (RISs)-based transmission framework is proposed for downlink non-orthogonal multiple access (NOMA) networks. We propose a quality-of-service (QoS)-based clustering scheme to improve the resource efficiency and formulate a sum rate maximization problem by jointly optimizing the phase shift of the RIS and the power allocation at the base station (BS). A model-agnostic meta-learning (MAML)-based learning algorithm is proposed to solve the joint optimization problem with a fast convergence rate and low model complexity. Extensive simulation results demonstrate that the proposed QoS-based NOMA network achieves significantly higher transmission throughput compared to the conventional orthogonal multiple access (OMA) network. It can also be observed that substantial throughput gain can be achieved by integrating RISs in NOMA and OMA networks. Moreover, simulation results of the proposed QoS-based clustering method demonstrate observable throughput gain against the conventional channel condition-based schemes.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here