Meta-Learning Improves Lifelong Relation Extraction
Most existing relation extraction models assume a fixed set of relations and are unable to adapt to exploit newly available supervision data to extract new relations. In order to alleviate such problems, there is the need to develop approaches that make relation extraction models capable of continuous adaptation and learning. We investigate and present results for such an approach, based on a combination of ideas from lifelong learning and optimization-based meta-learning. We evaluate the proposed approach on two recent lifelong relation extraction benchmarks, and demonstrate that it markedly outperforms current state-of-the-art approaches.
PDF Abstract