Mini-batch Serialization: CNN Training with Inter-layer Data Reuse

30 Sep 2018 Sangkug Lym Armand Behroozi Wei Wen Ge Li Yongkee Kwon Mattan Erez

Training convolutional neural networks (CNNs) requires intense computations and high memory bandwidth. We find that bandwidth today is over-provisioned because most memory accesses in CNN training can be eliminated by rearranging computation to better utilize on-chip buffers and avoid traffic resulting from large per-layer memory footprints... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet