Minimax Estimation of Quadratic Fourier Functionals

30 Mar 2018  ·  Shashank Singh, Bharath K. Sriperumbudur, Barnabás Póczos ·

We study estimation of (semi-)inner products between two nonparametric probability distributions, given IID samples from each distribution. These products include relatively well-studied classical $\mathcal{L}^2$ and Sobolev inner products, as well as those induced by translation-invariant reproducing kernels, for which we believe our results are the first. We first propose estimators for these quantities, and the induced (semi)norms and (pseudo)metrics. We then prove non-asymptotic upper bounds on their mean squared error, in terms of weights both of the inner product and of the two distributions, in the Fourier basis. Finally, we prove minimax lower bounds that imply rate-optimality of the proposed estimators over Fourier ellipsoids.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here