Minimax Optimality (Probably) Doesn't Imply Distribution Learning for GANs

ICLR 2022  ·  Sitan Chen, Jerry Li, Yuanzhi Li, Raghu Meka ·

Arguably the most fundamental question in the theory of generative adversarial networks (GANs) is to understand to what extent GANs can actually learn the underlying distribution. Theoretical and empirical evidence suggests local optimality of the empirical training objective is insufficient. Yet, it does not rule out the possibility that achieving a true population minimax optimal solution might imply distribution learning. In this paper, we show that standard cryptographic assumptions imply that this stronger condition is still insufficient. Namely, we show that if local pseudorandom generators (PRGs) exist, then for a large family of natural continuous target distributions, there are ReLU network generators of constant depth and polynomial size which take Gaussian random seeds so that (i) the output is far in Wasserstein distance from the target distribution, but (ii) no polynomially large Lipschitz discriminator ReLU network can detect this. This implies that even achieving a population minimax optimal solution to the Wasserstein GAN objective is likely insufficient for distribution learning in the usual statistical sense. Our techniques reveal a deep connection between GANs and PRGs, which we believe will lead to further insights into the computational landscape of GANs.

PDF Abstract ICLR 2022 PDF ICLR 2022 Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.