Minimax Regret for Stochastic Shortest Path with Adversarial Costs and Known Transition

7 Dec 2020  ·  Liyu Chen, Haipeng Luo, Chen-Yu Wei ·

We study the stochastic shortest path problem with adversarial costs and known transition, and show that the minimax regret is $\widetilde{O}(\sqrt{DT^\star K})$ and $\widetilde{O}(\sqrt{DT^\star SA K})$ for the full-information setting and the bandit feedback setting respectively, where $D$ is the diameter, $T^\star$ is the expected hitting time of the optimal policy, $S$ is the number of states, $A$ is the number of actions, and $K$ is the number of episodes. Our results significantly improve upon the existing work of (Rosenberg and Mansour, 2020) which only considers the full-information setting and achieves suboptimal regret. Our work is also the first to consider bandit feedback with adversarial costs. Our algorithms are built on top of the Online Mirror Descent framework with a variety of new techniques that might be of independent interest, including an improved multi-scale expert algorithm, a reduction from general stochastic shortest path to a special loop-free case, a skewed occupancy measure space, and a novel correction term added to the cost estimators. Interestingly, the last two elements reduce the variance of the learner via positive bias and the variance of the optimal policy via negative bias respectively, and having them simultaneously is critical for obtaining the optimal high-probability bound in the bandit feedback setting.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here