Minimax Semiparametric Learning With Approximate Sparsity

27 Dec 2019  ·  Jelena Bradic, Victor Chernozhukov, Whitney K. Newey, Yinchu Zhu ·

This paper is about the feasibility and means of root-n consistently estimating linear, mean-square continuous functionals of a high dimensional, approximately sparse regression. Such objects include a wide variety of interesting parameters such as regression coefficients, average derivatives, and the average treatment effect. We give lower bounds on the convergence rate of estimators of a regression slope and an average derivative and find that these bounds are substantially larger than in a low dimensional, semiparametric setting. We also give debiased machine learners that are root-n consistent under either a minimal approximate sparsity condition or rate double robustness. These estimators improve on existing estimators in being root-n consistent under more general conditions that previously known.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here