Minimax sparse principal subspace estimation in high dimensions

2 Nov 2012  ·  Vincent Q. Vu, Jing Lei ·

We study sparse principal components analysis in high dimensions, where $p$ (the number of variables) can be much larger than $n$ (the number of observations), and analyze the problem of estimating the subspace spanned by the principal eigenvectors of the population covariance matrix. We introduce two complementary notions of $\ell_q$ subspace sparsity: row sparsity and column sparsity. We prove nonasymptotic lower and upper bounds on the minimax subspace estimation error for $0\leq q\leq1$. The bounds are optimal for row sparse subspaces and nearly optimal for column sparse subspaces, they apply to general classes of covariance matrices, and they show that $\ell_q$ constrained estimates can achieve optimal minimax rates without restrictive spiked covariance conditions. Interestingly, the form of the rates matches known results for sparse regression when the effective noise variance is defined appropriately. Our proof employs a novel variational $\sin\Theta$ theorem that may be useful in other regularized spectral estimation problems.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here