Minimizing Quadratic Functions in Constant Time

NeurIPS 2016  ·  Kohei Hayashi, Yuichi Yoshida ·

A sampling-based optimization method for quadratic functions is proposed. Our method approximately solves the following $n$-dimensional quadratic minimization problem in constant time, which is independent of $n$: $z^*=\min_{\mathbf{v} \in \mathbb{R}^n}\langle\mathbf{v}, A \mathbf{v}\rangle + n\langle\mathbf{v}, \mathrm{diag}(\mathbf{d})\mathbf{v}\rangle + n\langle\mathbf{b}, \mathbf{v}\rangle$, where $A \in \mathbb{R}^{n \times n}$ is a matrix and $\mathbf{d},\mathbf{b} \in \mathbb{R}^n$ are vectors. Our theoretical analysis specifies the number of samples $k(\delta, \epsilon)$ such that the approximated solution $z$ satisfies $|z - z^*| = O(\epsilon n^2)$ with probability $1-\delta$. The empirical performance (accuracy and runtime) is positively confirmed by numerical experiments.

PDF Abstract NeurIPS 2016 PDF NeurIPS 2016 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here