Mining Automatically Estimated Poses from Video Recordings of Top Athletes

24 Apr 2018  ·  Rainer Lienhart, Moritz Einfalt, Dan Zecha ·

Human pose detection systems based on state-of-the-art DNNs are on the go to be extended, adapted and re-trained to fit the application domain of specific sports. Therefore, plenty of noisy pose data will soon be available from videos recorded at a regular and frequent basis. This work is among the first to develop mining algorithms that can mine the expected abundance of noisy and annotation-free pose data from video recordings in individual sports. Using swimming as an example of a sport with dominant cyclic motion, we show how to determine unsupervised time-continuous cycle speeds and temporally striking poses as well as measure unsupervised cycle stability over time. Additionally, we use long jump as an example of a sport with a rigid phase-based motion to present a technique to automatically partition the temporally estimated pose sequences into their respective phases. This enables the extraction of performance relevant, pose-based metrics currently used by national professional sports associations. Experimental results prove the effectiveness of our mining algorithms, which can also be applied to other cycle-based or phase-based types of sport.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here