Mitigating Adversarial Attacks by Distributing Different Copies to Different Users

30 Nov 2021  ·  Jiyi Zhang, Han Fang, Wesley Joon-Wie Tann, Ke Xu, Chengfang Fang, Ee-Chien Chang ·

Machine learning models are vulnerable to adversarial attacks. In this paper, we consider the scenario where a model is distributed to multiple buyers, among which a malicious buyer attempts to attack another buyer. The malicious buyer probes its copy of the model to search for adversarial samples and then presents the found samples to the victim's copy of the model in order to replicate the attack. We point out that by distributing different copies of the model to different buyers, we can mitigate the attack such that adversarial samples found on one copy would not work on another copy. We observed that training a model with different randomness indeed mitigates such replication to a certain degree. However, there is no guarantee and retraining is computationally expensive. A number of works extended the retraining method to enhance the differences among models. However, a very limited number of models can be produced using such methods and the computational cost becomes even higher. Therefore, we propose a flexible parameter rewriting method that directly modifies the model's parameters. This method does not require additional training and is able to generate a large number of copies in a more controllable manner, where each copy induces different adversarial regions. Experimentation studies show that rewriting can significantly mitigate the attacks while retaining high classification accuracy. For instance, on GTSRB dataset with respect to Hop Skip Jump attack, using attractor-based rewriter can reduce the success rate of replicating the attack to 0.5% while independently training copies with different randomness can reduce the success rate to 6.5%. From this study, we believe that there are many further directions worth exploring.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here