MMTAfrica: Multilingual Machine Translation for African Languages

In this paper, we focus on the task of multilingual machine translation for African languages and describe our contribution in the 2021 WMT Shared Task: Large-Scale Multilingual Machine Translation. We introduce MMTAfrica, the first many-to-many multilingual translation system for six African languages: Fon (fon), Igbo (ibo), Kinyarwanda (kin), Swahili/Kiswahili (swa), Xhosa (xho), and Yoruba (yor) and two non-African languages: English (eng) and French (fra). For multilingual translation concerning African languages, we introduce a novel backtranslation and reconstruction objective, BT\&REC, inspired by the random online back translation and T5 modeling framework respectively, to effectively leverage monolingual data. Additionally, we report improvements from MMTAfrica over the FLORES 101 benchmarks (spBLEU gains ranging from $+0.58$ in Swahili to French to $+19.46$ in French to Xhosa). We release our dataset and code source at https://github.com/edaiofficial/mmtafrica.

PDF Abstract WMT (EMNLP) 2021 PDF WMT (EMNLP) 2021 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods