MobIE: A German Dataset for Named Entity Recognition, Entity Linking and Relation Extraction in the Mobility Domain

We present MobIE, a German-language dataset, which is human-annotated with 20 coarse- and fine-grained entity types and entity linking information for geographically linkable entities. The dataset consists of 3,232 social media texts and traffic reports with 91K tokens, and contains 20.5K annotated entities, 13.1K of which are linked to a knowledge base. A subset of the dataset is human-annotated with seven mobility-related, n-ary relation types, while the remaining documents are annotated using a weakly-supervised labeling approach implemented with the Snorkel framework. To the best of our knowledge, this is the first German-language dataset that combines annotations for NER, EL and RE, and thus can be used for joint and multi-task learning of these fundamental information extraction tasks. We make MobIE public at https://github.com/dfki-nlp/mobie.

PDF Abstract KONVENS (WS) 2021 PDF KONVENS (WS) 2021 Abstract

Datasets


Introduced in the Paper:

MobIE

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here