Model-Based Clustering of Time-Evolving Networks through Temporal Exponential-Family Random Graph Models

20 Dec 2017  ·  Kevin H. Lee, Lingzhou Xue, David R. Hunter ·

Dynamic networks are a general language for describing time-evolving complex systems, and discrete time network models provide an emerging statistical technique for various applications. It is a fundamental research question to detect the community structure in time-evolving networks... However, due to significant computational challenges and difficulties in modeling communities of time-evolving networks, there is little progress in the current literature to effectively find communities in time-evolving networks. In this work, we propose a novel model-based clustering framework for time-evolving networks based on discrete time exponential-family random graph models. To choose the number of communities, we use conditional likelihood to construct an effective model selection criterion. Furthermore, we propose an efficient variational expectation-maximization (EM) algorithm to find approximate maximum likelihood estimates of network parameters and mixing proportions. By using variational methods and minorization-maximization (MM) techniques, our method has appealing scalability for large-scale time-evolving networks. The power of our method is demonstrated in simulation studies and empirical applications to international trade networks and the collaboration networks of a large American research university. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here