Model-based imitation learning from state trajectories

Imitation learning from demonstrations usually relies on learning a policy from trajectories of optimal states and actions. However, in real life expert demonstrations, often the action information is missing and only state trajectories are available. We present a model-based imitation learning method that can learn environment-specific optimal actions only from expert state trajectories. Our proposed method starts with a model-free reinforcement learning algorithm with a heuristic reward signal to sample environment dynamics, which is then used to train the state-transition probability. Subsequently, we learn the optimal actions from expert state trajectories by supervised learning, while back-propagating the error gradients through the modeled environment dynamics. Experimental evaluations show that our proposed method successfully achieves performance similar to (state, action) trajectory-based traditional imitation learning methods even in the absence of action information, with much fewer iterations compared to conventional model-free reinforcement learning methods. We also demonstrate that our method can learn to act from only video demonstrations of expert agent for simple games and can learn to achieve desired performance in less number of iterations.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here