Model-Free $δ$-Policy Iteration Based on Damped Newton Method for Nonlinear Continuous-Time H$\infty$ Tracking Control

23 Jan 2024  ·  Qi Wang ·

This paper presents a {\delta}-PI algorithm which is based on damped Newton method for the H{\infty} tracking control problem of unknown continuous-time nonlinear system. A discounted performance function and an augmented system are used to get the tracking Hamilton-Jacobi-Isaac (HJI) equation. Tracking HJI equation is a nonlinear partial differential equation, traditional reinforcement learning methods for solving the tracking HJI equation are mostly based on the Newton method, which usually only satisfies local convergence and needs a good initial guess. Based upon the damped Newton iteration operator equation, a generalized tracking Bellman equation is derived firstly. The {\delta}-PI algorithm can seek the optimal solution of the tracking HJI equation by iteratively solving the generalized tracking Bellman equation. On-policy learning and off-policy learning {\delta}-PI reinforcement learning methods are provided, respectively. Off-policy version {\delta}-PI algorithm is a model-free algorithm which can be performed without making use of a priori knowledge of the system dynamics. NN-based implementation scheme for the off-policy {\delta}-PI algorithms is shown. The suitability of the model-free {\delta}-PI algorithm is illustrated with a nonlinear system simulation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here