Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample Complexity

6 Jun 2020  ·  Zihan Zhang, Yuan Zhou, Xiangyang Ji ·

In this paper we consider the problem of learning an $\epsilon$-optimal policy for a discounted Markov Decision Process (MDP). Given an MDP with $S$ states, $A$ actions, the discount factor $\gamma \in (0,1)$, and an approximation threshold $\epsilon > 0$, we provide a model-free algorithm to learn an $\epsilon$-optimal policy with sample complexity $\tilde{O}(\frac{SA\ln(1/p)}{\epsilon^2(1-\gamma)^{5.5}})$ (where the notation $\tilde{O}(\cdot)$ hides poly-logarithmic factors of $S,A,1/(1-\gamma)$, and $1/\epsilon$) and success probability $(1-p)$. For small enough $\epsilon$, we show an improved algorithm with sample complexity $\tilde{O}(\frac{SA\ln(1/p)}{\epsilon^2(1-\gamma)^{3}})$. While the first bound improves upon all known model-free algorithms and model-based ones with tight dependence on $S$, our second algorithm beats all known sample complexity bounds and matches the information theoretic lower bound up to logarithmic factors.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here